ELECRTOMAGNETIC SPECTRUM NOTES

Line spectra

All atoms give off **light** when **heated**, although sometimes this light is not visible to the human eye. A **prism** can be used to split this light to form a **spectrum**, and each element has its own distinctive line spectrum. This technique is known as **spectroscopy**. Some examples of what line spectra look like are shown here:

Scientists have used line spectra to discover new elements. In fact, the discovery of some elements, such as **rubidium** and **caesium**, was not possible until the development of spectroscopy. The element **helium** was discovered by studying line spectra emitted by the Sun.

Black Body and Line Spectra

Name	Date Period
	PECTRUM WORKSHEET
1.	Rank the types of waves from longest to shortest wavelength:,,,
2.	Which color has the most energy?
3.	Which color has the least energy?
4.	On the EM Spectrum, which type of wave has the most energy?
5.	On the EM Spectrum, which type of wave has the least energy?
6.	On the EM Spectrum, which type of wave has the highest frequency (shorter waves)?
7.	On the EM Spectrum, which type of wave has the lowest frequency?
8.	Yellow light has a longer wavelength than green light. Which color of light has the higher frequency?
9.	Green light has a lower frequency than blue light. Which color of light has a longer wavelength?
10.	The higher the frequency, the (higher / lower) the energy. This is an example of a/an (inverse/direct) relationship.
11.	The higher or longer the wavelength, the (higher / lower) the energy. This is an example of a/an (inverse/direct) relationship.
12.	The longer the wavelength, the (higher / lower) the frequency, is a/an (inverse/direct) relationship.